PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasion in vitro.

نویسندگان

  • Yi Lu
  • Guozhi Xiao
  • Deborah L Galson
  • Yoshihiko Nishio
  • Atsushi Mizokami
  • Evan T Keller
  • Zhi Yao
  • Jian Zhang
چکیده

Prostate cancer (PCa) preferentially metastasizes to bone resulting in osteoblastic lesions with underlying osteolytic activities. The mechanisms through which PCa cells promote osteolytic activities and subsequent osteoblastic bone formation remain poorly understood. Parathyroid hormone-related protein (PTHrP), produced by bone cells and PCa, binds to receptors on osteoblasts and stimulates bone formation and resorption. We have previously reported that MCP-1 acts as a paracrine and autocrine factor for PCa progression. However, the role of PTHrP in regulating MCP-1 expression in bone microenvironment, specifically by human bone marrow endothelial cells (HBME) and osteoblasts (hFOB), as well as by PCa cells, has not been studied. Accordingly, we first determined the effect of PTHrP on MCP-1 expression by bone cells and PCa cells. PTHrP induced both MCP-1 protein and mRNA expression by HBME and hFOB cells, but not by PCa LNCaP and PC3 cells. To further determine the mechanisms of PTHrP-induced MCP-1 transcription, analysis of the MCP-1 promoter was performed. MCP-1 promoter activity was induced by PTHrP. Both C/EBPbeta and NF-kappaB binding elements are required for PTHrP-induced MCP-1 transcription. Finally, when a constitutively-active PTH receptor construct was transfected into HBME and hFOB cells, MCP-1 production was increased. The conditioned media collected from these cells induced osteoclast differentiation and PC3 proliferation and invasion in vitro. These inductions were partially inhibited by MCP-1 neutralizing antibody. We conclude that PTHrP-induced MCP-1 production by HBME and hFOB cells promotes osteoclast differentiation in vitro and such induction may play a critical role in PCa development in the bone microenvironment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions.

Expression of parathyroid hormone-related protein (PTHrP) correlates with prostate cancer skeletal progression; however, the impact of prostate cancer-derived PTHrP on the microenvironment and osteoblastic lesions in skeletal metastasis has not been completely elucidated. In this study, PTHrP overexpressing prostate cancer clones were stably established by transfection of full length rat PTHrP ...

متن کامل

Capillary Network Formation by Endothelial Cells Differentiated from Human Bone Marrow Mesenchymal Stem Cells

Human bone marrow derived mesenchymal stem cells (HBMSCs) have the potential to differentiate into cells such as adipocyte, osteocyte, hepatocyte and endothelial cells. In this study, the differentiation of hBMSCs into endothelial like-cells was induced in presence of vascular endothelial growth factor (VEGF) and insulin-like growth factor (IGF-1). The differentiated endothelial cells were exam...

متن کامل

Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells

Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of cancer

دوره 121 4  شماره 

صفحات  -

تاریخ انتشار 2007